Al金属间化合物涂层高温抗氧化行为的影响

来源:金属热处理300问作者:杨满

[1]   Das B, Roy S, Rai R N, et al.Development of an in-situ synthesized multi-component reinforced Al-4.5%Cu-TiC metal matrix composite by FAS technique——Optimization of process parameters[J]. Eng. Sci. Technol., Int. J., 2016, 19: 279  
[2]   Chen H, Zhou H M, Zou Y.Synthesis of ultrafine crystal/nanocrystalline TiAl-based alloy by in situ sintering[J]. Rare Met. Mater. Eng., 2015, 44: 2387  
[3]   Meng J S, Ji Z S.Microstructure and technology research of in-situ synthesis TiN-TiB2/Ni composite coating by argon arc cladding[J]. Phys. Procedia, 2013, 50: 253  
[4]   Liu K, Li Y J, Wang J, et al.Effect of high dilution on the in situ synthesis of Ni-Zr/Zr-Si(B, C) reinforced composite coating on zirconium alloy substrate by laser cladding[J]. Mater. Des., 2015, 87: 66  
[5]   Liu H X, Zhang X W, Jiang Y H, et al.Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process[J]. J. Alloys Compd., 2016, 670: 268  
[6]   Fu Y, Zhang X C, Sui J F, et al.Microstructure and wear resistance of one-step in-situ synthesized TiN/Al composite coatings on Ti6Al4V alloy by a laser nitriding process[J]. Opt. Laser Technol., 2015, 67: 78  
[7]   Weng F, Chen C Z, Yu H J, et al.Research status of laser cladding on titanium and its alloys: A review[J]. Mater. Des., 2014, 58: 412  
[8]   Wang Y, Yu H J, Chen C Z, et al.Review of the biocompatibility of micro-arc oxidation coated titanium alloys[J]. Mater. Des., 2015, 85: 640  
[9]   Zhang Q, Chen J, Tan H, et al.Influence of solution treatment on microstructure evolution of TC21 titanium alloy with near equiaxed β grains fabricated by laser additive manufacture[J]. J. Alloys Compd., 2016, 666: 380  
[10]   Hounkpati V, Fréour S, Gloaguen D, et al.In situ neutron measurements and modelling of the intergranular strains in the near-β titanium alloy Ti-β21S[J]. Acta Mater., 2016, 109: 341  
[11]   Riedl H, Koller C M, Munnik F, et al.Influence of oxygen impurities on growth morphology, structure and mechanical properties of Ti-Al-N thin films[J]. Thin Solid Films, 2016, 603: 39  
[12]   Cui H Z, Ma L, Cao L L, et al.Effect of NiAl content on phases and microstructures of TiC-TiB2-NiAl composites fabricated by reaction synthesis[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 346  
[13]   Sina H, Surreddi K B, Iyengar S.Phase evolution during the reactive sintering of ternary Al-Ni-Ti powder compacts[J]. J. Alloys Compd., 2016, 661: 294  
[14]   Chen L, Yang Y, Wu M J, et al.Correlation between arc evaporation of Ti-Al-N coatings and corresponding Ti0.50Al0.50 target types[J]. Surf. Coat. Technol., 2015, 275: 309  
[15]   Wang T T, Wang C S, Sun W, et al.Microstructure evolution and mechanical properties of GH984G alloy with different Ti/Al ratios during long-term thermal exposure[J]. Mater. Des., 2014, 62: 225  
[16]   Sun Y B, Vajpai S K, Ameyama K, et al.Fabrication of multilayered Ti-Al intermetallics by spark plasma sintering[J]. J. Alloys Compd., 2014, 585: 734  
[17]   Shi Z W, Wei H, Zhang H Y, et al.Nanotwinned Ti(O, C) induced by oriented attachment in a hot-pressed Nb-Ti-Al alloy[J]. Acta Mater., 2016, 105: 114  
[18]   Shi Z W, Wei H, Zhang H Y, et al.Investigation of a hot-pressed Nb-Ti-Al alloy: Mechanical alloying, microstructure and mechanical property[J]. Mater. Sci. Eng., 2016, A651: 869  
[19]   Farooq M U, Khalid F A, Zaigham H, et al.Superelastic behaviour of Ti-Nb-Al ternary shape memory alloys for biomedical applications[J]. Mater. Lett., 2014, 121: 58  
[20]   Kenel C, Leinenbach C.Influence of Nb and Mo on microstructure formation of rapidly solidified ternary Ti-Al-(Nb, Mo) alloys[J]. Intermetallics, 2016, 69: 82  
[21]   Ding X F.Effect of microstructures on mechanical properties for Ti-Al-Nb ternary alloys [D].[D] Dalian: Dalian University of Technology, 2005  
[21]   (丁晓菲. Ti-Al-Nb三元系中的合金组织对性能的影响 [D][D]. 大连: 大连理工大学, 2005)  
[22]   Witusiewicz V T, Bondar A A, Hecht U, et al.The Al-B-Nb-Ti system: IV. Experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems[J]. J. Alloys Compd., 2009, 472: 133  
[23]   Shen Y, Ding X F, Wang F G, et al.High-temperature oxidation resistance of high-Nb TiAl-based alloy[J]. J. Chin. Soc. Corros. Protec., 2004, 24: 203  
[23]   (沈勇, 丁晓非, 王富岗等. 高铌TiAl基合金高温抗氧化性能研究[J]. 中国腐蚀与防护学报, 2004, 24: 203)  
[24]   Wang X J, Chang H W, Lei M K.Thermodynamic aspects of oxidation for Nb alloying γ-TiAl intermetallic compounds[J]. Acta Metall. Sin., 2001, 37: 810  
[24]   (王兴军, 常海威, 雷明凯. Nb合金化γ-TiAl的氧化热力学理论分析[J]. 金属学报, 2001, 37: 810)  
[25]   Burks N,Meyer G H, translated by Zhao G T, Zhao K Q. Introduction to High Temperature Oxidation of Metals [M]. Beijing: Metallurgical Industry Press, 1989: 45  
[25]   (Burks N, Meyer G H 著, 赵公台, 赵克清译. 金属高温氧化导论 [M]. 北京: 冶金工业出版社, 1989: 45)  
[26]   Stroosnijder M F, Zheng N, Quadakkers W J, et al.The effect of niobium ion implantation on the oxidation behavior of a γ-TiAl-based intermetallic[J]. Oxid. Met., 1996, 46: 19  
[27]   Liang Y J, Che Y C.Handbook of Thermodynamic Data of Inorganic Materials [M]. Shenyang: Northeastern University Press, 1993: 17  
[27]   (梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993: 17)